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A B S T R A C T

In this paper we control the amount of three major biological cell types (normal, immune and tumor cells) under
uncertainty in cancer model parameters, using different chemotherapy drug dosages. To achieve this goal, an
adaptive robust controller is proposed for a third order nonlinear model, which consists of the interaction
between normal, immune and tumor cells. We adjust the drug dosages to control the tumor growth and
maintain immune and normal cells in their desired values. Due to tumor micro-environmental and biological
changes and measurement inaccuracies, the exact quantity of the model parameters is not available. Therefore,
it is necessary to design the controller in a way that it is robust against parameters uncertainty and variations,
the proposed robust adaptive controller manipulates the drug dosages and estimates the parameters of the
model, simultaneously. The resulting system is robust against parameters uncertainty and variations. The global
stability and tracking convergence of the controller is proved using time-varying Lyapunov function. Moreover,
extended Kalman filter observer is applied to estimate the immune cells, due to the difficulty measuring them
during the biological in vivo experiments. The performance of the proposed controller and observer are
investigated by computational results. Computational results show the desired effect of drug dosage injections
on the normal, immune and tumor cells. We observe that the controller guarantees the robust performance
against the parameters uncertainty. The extended Kalman filter observer has effective performance and
estimates the immune cells with high accuracy. This approach could impact robust tumor control using
appropriate drug dosages while the parameters of the model change over time in a patient and across different
patients.

1. Introduction

Cancer is one of the most important diseases that caused human
death in the world. There are many ways to treat cancer, such as
surgery, radiotherapy, chemotherapy, hormone therapy, and immu-
notherapy [1]. Among the various treatment methods, chemotherapy is
very important and widely used in practice. During this procedure
some normal cells may be killed in addition to cancer cells [2].

Chemotherapy has many different side effects such as disturbing
frequent dividing cells. The rate of division in cancer cells is more than
normal cells. Hence, cancer cells are more sensitive to chemotherapy.
In some tissues such as skin, hair and nails cell division happens more
frequently therefore, chemotherapy may damage these kind of cells [3].
But, normal cells repair the damage because of their intact protective
system. Genes which make chromosomes in nucleus, are the regulators

of cell activity. Genes are copied exactly in each cell division and
chemotherapy have potential to damage genes in different phases of
this process [4–6]. Normal cells located in a rest phase of cell cycle may
protect from chemotherapy damage [7,8]. Nowadays, to reduce che-
motherapy side effects, scientists suggested to combine chemotherapy
drugs in different stages of treatment. In this case there is more chance
to kill more cancer cells.

Mathematical modeling provides a low-cost approach to evaluate
different control strategies in cancer treatment, and shows the relation-
ship between the population of cancer cells, normal cells and drug
resistance, [9]. The general area of mathematical modeling of cancer
have been evolved recently and there are many papers about cancer
modeling in the literature, see e.g., [10] and [11]. Many mathematical
models have been proposed to evaluate the effects of a drug on tumor
behavior, [12–15]. To show the chemotherapy response to tumor
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growth, a simple mathematical model which consists of three differ-
ential equations associated with the normal cells, cancer cells and
chemotherapy drug, is presented in [16]. The effect of chemotherapy
on normal and cancer cells follow Michaelis-Menten saturation func-
tion as described in [17]. Various control strategies have been proposed
to reduce the side effects of drugs, see e.g., [18]. Especially, it is
important to know the effects of chemotherapy drugs on tumor growth,
[19]. Many control strategies have been proposed to control the tumor
size. In [20] optimal singular control in chemotherapy is presented. In
[21] a stochastic model of cancer chemotherapy is considered and
optimal controller is designed for this model. A tumor model with
immune resistance and drug therapy is presented in [22] and optimal
control is used to control the tumor growth.

There are various sources of uncertainty associated with che-
motherapy which prevents the above mentioned approaches to guar-
antee the robust performance of the controller. To guarantee a robust
performance in the presence of uncertainties, the robust control
approach have been proposed in [23]. In [24], two control strategies
are studied to make the system performance robust against uncertain-
ties. Theses methods are: optimal linear regulation and H∞ robust
control. H∞ controller has the best performance for system with
uncertainties; however its design is difficult. To design optimal linear
regulation, see e.g., [25], the nonlinear model should be linearized
around its operating point. Therefore, the performance of the controller
depends on the operating point and it performs well only around this
point. To solve this problem a nonlinear adaptive control strategy is
developed in [26]. In this work a first order nonlinear model of tumor
that only considers tumor cells have been used.

In this paper, a nonlinear robust adaptive control strategy is
developed for a third order nonlinear model. This model consists of
normal cells, immune cells, tumor cells, and the effect of chemotherapy
treatment. In our work, the tumor size, the amount of normal and
immune cells are controlled by adaptive variation of drug dosages. The
controller is designed based on Lyapunov stability theorem, and
guarantees the global stability and tracking convergence. Unlike, the
linear controllers that require the model of nonlinear system to be
linearized around the operating point, the proposed nonlinear con-
troller does not require any linearization. Moreover, the parameters of
the model have been estimated in the control loop, and the controller is
robust against parameters uncertainties associated with the model
dynamics. In addition, since the measurement of immune cells is
difficult in experimental labs an extended Kalman filter observer is
applied to estimate the immune cells.

This paper is organized as follows: Section 2 resents the nonlinear
cancer model used in work. Section 3 explains the design of our control
strategy and its stability. Section 4 describes the design of extended
Kalman filter observer to estimate the immune cells. Section 5 shows
the computational results and the convergence behavior of the
controller. Section 6 provides comparison with related work in the
literature and concluding remarks are made in Section 7.

2. Mathematical model of chemotherapy

There are many mathematical models for describing the che-
motherapy process, see, e.g., [27,28]. Since, the goal of this paper is
to propose a nonlinear control method which is robust against
parameters uncertainty. We have used a minimal order model of
chemotherapy to investigate the performance of this control strategy.
We chose the chemotherapy model of [29], which is widely used in the
literature, see e.g., [9]. This model includes the interaction of tumor
cells with normal and immune cells in a dynamical system. This
nonlinear model is presented below;

I s ρIT
α T

c IT d I a u I˙ = +
+

− − − ,1 1 1 1 (1)

T rT b T c IT c TN a u T˙ = (1 − ) − − − ,1 1 2 3 2 2 (2)

N r N b N c TN a u N˙ = (1 − ) − − .2 2 4 3 3 (3)

N t( ), T t( ) and I t( ) represent the number of normal, tumor and immune
cells at time t , respectively. The drug injections are considered as the
control input in the model. u t( )1 , u t( )2 and u t( )3 denote the effect of
chemotherapy drugs. This model assumes a type of immune cell that
can cause the reduction of tumor size through a kinetic process. Also
this model includes immunes cells that their growth is stimulated by
the presence of the tumor such as T-cells. In this model, we assume
that all cell populations are killed by chemotherapy drug with different
ratios.

Several resources such as bone marrow and lymph nodes could
create a constant source for immune cells, s, which is shown in the first
term of Eq. (1). The second term is the saturation function with the
positive parameters ρ and α, that represents the immune cells are
stimulated by tumor cells. The competition among immune and tumor
cells, that cause the loss of immune cells is shown in the third term. The
forth term shows that Immune cells die at the natural death rate d1. The
fifth term is the loss of immune cells due to the drug injection.

The growth of tumor cell population is shown in the first term of Eq.
(2) as the logistic term with growth rate r1 and maximum carrying
capacity b1

−1. The logistic growth term models the competition between
proliferation and death rate [30]. The competition among immune and
tumor cells, that cause the loss of tumor cells is shown in the second
term. The competition among tumor and normal cells, that cause the
loss of tumor cells is shown in the third term. The loss of tumor cells
due to the drug injection is shown in the forth term.

The growth of normal cell population is shown in the first term of
Eq. (3) as the logistic term with growth rate r2 and maximum carrying
capacity b2

−1. The competition among normal and tumor cells, that
cause the loss of normal cells is shown in the second term. The third
term is the loss of normal cells due to the drug injection.

The effect of chemotherapy on killing cell populations are repre-
sented by a1, a2 and a3, [31]. The values of different parameters are
listed in Table 1.

3. Robust adaptive control

In this section, a robust adaptive control strategy is proposed for
the third order nonlinear model described in Section 2. The objective of
this controller is that the tumor, normal and immune cells track their
desired values. To achieve this goal, the volume of the biological cells
(tumor, normal and immune) are compared with their desired values,
the error signals are created, and the drug dosages are recommended
accordingly. Moreover, to make the control system robust against

Table 1
Nominal parameters of the chemotherapy model [31].

Parameter Description Value

a1 Fractional normal cell kill by chemotherapy 0.05
a2 Fractional tumor cell kill by chemotherapy 0.15
a3 Fractional immune cell kill by chemotherapy 0.1

b1
−1 Tumor cell carrying capacity 1.0

b2
−1 Normal cell carrying capacity 1.0

c1 Fractional tumor cell kill by immune cells 1.0
c2 Fractional immune cell kill by tumor cells 0.5
c3 Fractional tumor cell kill by normal cells 1.0
c4 Fractional normal cell kill by tumor cells 1.0
d1 Death rate of immune cells 0.2
r1 Tumor cell growth rate 1.5
r2 Normal cell growth rate 1.0
s Steady source rate for immune cells 0.33
α Immune threshold rate 0.3
ρ Immune response rate 0.01
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parameters uncertainty, the parameters of the model are estimated and
used in the control loop.

Lets begin with the third order model of tumor that is described in
Eqs. (1), (2) and (3) and rewrite the model in the regressor format as
what follows:
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⎣
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⎦
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Rearrange Eq. (4) to the following form:
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Lets define the regressor vectors as:
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To consider the uncertainty in the model, the parameters of the
model are replaced with their estimated values and we arrive at the
following parameters vectors:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

θ s
a

ρ
a

c
a

d
a a

θ r
a

rb
a

c
a

c
a a

θ r
a

r b
a

c
a a

= 1 ,

= 1 ,

= 1 .

̂ ̂

̂ ̂

T

T

T

1
1 1

1

1

1

1 1

2
1

2

1 1

2

2

2

3

2 2

3
2

3

2 2

3

4

3 3 (7)

Moreover, to make the system stable and states (normal, immune
and tumor cells) track their desired values, we consider the states
derivative in the following format:

I I γ I I

T T γ T T

N N γ N N

̇ = ̇ − ( − ),
̇ = ̇ − ( − ),
̇ = ̇ − ( − ).

d d

d d

d d

1

2

3 (8)

Where γ1, γ2 and γ3 are positive constants, Id and İd are desired values
and the derivative of immune cells, Td and Ṫd are desired values and the
derivative of tumor cells, and Nd and Ṅd are desired value and the
derivative of normal cells, respectively. By substituting Eq. (8) in Eq. (6)
we get,

⎡
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d d
d d
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1

2 2
2

3 3
3
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According to the regressor form of system equations, the following
control law is considered.

⎧
⎨
⎪⎪

⎩
⎪⎪

u Yθ

u Y θ

u Y θ

= ,
= ,
=

1 1 1

2 2 2

3 3 3. (10)

Where θ1, θ2 and θ3 are the estimating vector parameters. The
adaptation law for estimating vector parameters is expressed as,

⎧
⎨
⎪⎪

⎩
⎪⎪

θ I IΓY a

θ TTΓ Y a

θ N NΓY a

̇ = sign( ),
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∼

∼

͠

T

T

T

1 1 1 1

2 2 2 2

3 3 3 3 (11)

where Γ1, Γ2 and Γ3 are symmetric positive definite constant matrices. I∼,
T∼, and N͠ are the error vectors of the immune, tumor, and normal cells,
respectively and are defined as:

I I I

T T T

N N N

= − ,

= − ,

= − .

d

d

d

∼

∼

∼
(12)

In the next section, using the Lyapunov stability theorem, we show
that the adaptation law in Eq. (11) makes the system stable in the
presence of parameters uncertainties.

3.1. Lyapunov stability analysis

To prove the stability and tractability of the states (amount of
immune, tumor and normal cells) a Lyapunov function is used, [32].
We choose the following positive definite candidate Lyapunov function.

V I T N a θ Γ θ a θ Γ θ a θ Γ θ= 1
2

( + + + + + ).∼ ∼ ∼ ∼ ∼ ∼ ∼∼ ͠ T T T2 2 2
1 1 1

−1
1 2 2 2

−1
2 3 3 3

−1
3 (13)

Where θ∼1, θ∼2 and θ∼3 are the error vectors defined below:

θ θ θ

θ θ θ

θ θ θ

= − ,

= − ,

= − .

1

∼

1 1

2

∼

2 2

3

∼

3 3 (14)

According to Eq. (13), the Lyapunov function is always positive
definite. The time derivative of Lyapunov function is obtained in the
following form,

V I I I T T T N N N

a θ Γ θ a θ Γ θ a θ Γ θ

̇ = ( ̇ − ̇ ) + ( ̇ − ̇ ) + ( ̇ − ̇ )
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2 3 3 3
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3 (15)
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Substituting the dynamic of the three equation model,

I s ρIT
α T

c IT d I a u I

T rT b T c IT c TN a u T
N r N b N c TN a u N

˙ = +
+

− − − ,

˙ = (1 − ) − − − ,
˙ = (1 − ) − − ,

1 1 1 1

1 1 2 3 2 2

2 2 4 3 3 (16)

in to Eq. (15), the time derivative of Lyapunov function is obtained as:
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Substituting the control law of Eq. (10) in Eq. (17), results in,
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By adding and subtracting γI∼1
2
, γ T∼2

2
and γ N͠3

3
and rearranging

Eq. (18) we get:
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Substituting the adaptation law of Eq. (11) in Eq. (19), and the fact
that Γ1, Γ2 and Γ3 are symmetric, i.e., Γ Γ= T

1 1 , Γ Γ= T
2 2 and Γ Γ= T

3 3 , the
Lyapunov time derivative is obtained as:

V γI γ T γ N˙ = − − − ≤ 0.∼ ∼ ͠
1

2
2

2
3

2
(20)

As one can observe from Eq. (20), derivative Lyapunov function is
negative semi definite, and the proposed control method guarantees
the stability of the system. The immune, tumor and normal cells
converge to their desired values if the control law that is obtained from
Eq. (10) is implemented.

Using the Barbalat's lemma, [33], and differentiating Eq. (20) we
get:

V γI I γ TT γ NN¨ = −2(
˙

+
˙

+
˙
).1

∼∼

2

∼ ∼

3

∼ ∼
(21)

Since I∼, T∼, N͠ , İ∼, Ṫ∼, and Ṅ͠ are bounded, Eq. (21) is bounded, thus V̇
is uniformly continues. According to Barbalat's lemma, the parameters
estimation error are bounded and the tracking errors of immune,
tumor and normal cells converge to zero.

4. Extended Kalman filter observer

Since, the measurement of immune cell is difficult in the lab
environment and require complex experiments, we use a nonlinear
observer to estimate the immune cells. We use the estimated value
instead of its measurement values in the adaptive controller. In this
section, an observer is designed to estimate the immune cells.

There are many ways to design an observer, such as Kalman filter,
sliding mode, MRAS (model reference adaptive system) and extended
Kalman filter. Since, the tumor growth represents nonlinear behavior, a
nonlinear observer must be used. Among the nonlinear observers, the
implementation of extended Kalman filter is easier. Therefore, we use
an extended Kalman filter to estimate the amount of immune cells. The
extended Kalman filter algorithm is provided in the following steps.

A discrete time nonlinear system is considered as:

x f x u w
y Hx v

= ( , ) + ,
= + .

k k k k

k k k

−1 −1

(22)

Where wk and vk are process and measurement noise, respectively. They
are assumed to be zero mean white Gaussian noise with R and Q
covariance matrices, i.e.,

w w Qδ Q

v v Rδ R

w v

{ } = > 0,

{ } = > 0,

{ } = 0.

k j
T

kj

k j
T

kj

k j
T

(23)

In Eq. (22), xk 's are the states of the system (the amount of immune,
normal, and tumor cells) and yk is the measurement vector that
contains normal and tumor cells, these vectors are defined as:

x I T N

y T N
= [ ] ,
= [ ] ,

k k k k
T

k k k
T

(24)

f is obtained from the cancer chemotherapy model that is described in
the Eqs. (1), (2) and (3). Since we assume the uncertainty in the model
parameters, we use the estimated values of parameters which are
obtained by Eq. (11), in the extended Kalman filter observer. Hence,
the f is defined as:

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
f

s c I T d I a u I

rT b T c I T c T N a u T

r N b N c T N a u N

=

+ − − −

(1 − ) − − −

(1 − ) − −

.̂

̂

ρ I T
α T k k k k k

k k k k k k k k

k k k k k k

+ 1 1 1 1

1 1 2 3 2 2

2 2 4 3 3

k k
k

(25)

Extended Kalman filter estimates various states using the following
procedure:

Prediction
The one-step prediction of xk k−1 and its corresponding error

covariance matrix Pk k−1 are defined as:

x f x

P F P F Q

F f x
x

= ( ),

= + ,

= ∂ ( )
∂

.

k k k

k k k k k
T

k

k x x

−1 −1

−1 −1

= k−1 (26)

Update
The estimation of state xk and estimation error covariance matrix Pk

calculated as;

x x k y H x

k P H H P H R

P P H R H

= + ( − ),

= ( + ) ,

= ( + ) ,

k k k k k k k k

k k k k
T

k k k k
T

k

k k k k
T

k k

−1 −1

−1 −1
−1

−1
−1 −1 −1

(27)

where kk is the Kalman gain, [34].
We estimate the immune cells using Eqs. (26) and (27).
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5. Computational results

To investigate the performance of the proposed controller, we have
carried out a few computational experiments. In these experiments we
use the parameters that are listed in Table 1 and are reported in [31].
We have carried out three experiments on the system without the
controller, with the adaptive controller and with both the adaptive
controller and the nonlinear observer.

Case 1: System without controller
In this case, we simulate the tumor dynamical system without the

presence of control signal (drug injection). In this experiment we
assume the initial state value to be (I(0) = 0.15, T (0) = 0.7, N(0) = 1).

The time response of the system states (immune, tumor and normal
cells) is shown in Fig. 1. According to this figure, the tumor cells growth
increases, while the immune and normal cells populations decrease.
Clearly, in this case the system does not have a desirable outcome.

Case 2: System with adaptive controller
In this case, the controller that is derived in Eq. (10), is imple-

mented. We assume that the parameters of model have uncertainty,
and are estimated using Eq. (11). These estimated values are used in
the control law.

The initial value of state vector is assumed to be I( (0) = 0.15,
T (0) = 0.7, N(0) = 1). The initial values of the parameters are assumed
to be (r = 0.511 , b = 11 , c = 0.82 , c = 2.53 , and a = 0.152 ). Time response
of the system states and the parameters estimation of Eq. (2) are shown
in Figs. 2 and 4, respectively. The control signals are shown in Fig. 5.

The interaction between immune, tumor and normal cells, in the
three dimensional graph, is shown in Fig. 3. The desired and initial
values of the immune, tumor and normal cells are (I = 1.7d , T = 0d , and
N = 1d ) and (I(0) = 0.15, T (0) = 0.7, and N(0) = 1), respectively.

According to Figs. 2 and 3, when drugs are injected the tumor cells
population decreases. After an initial decrease of the normal cells, the
drug dosages cause the normal cells population increases to reach its
desired value. Immune cells populations grows and plays an important
role in killing the tumor cells.

As one can observe from Fig. 5, the drug dosages are bounded and
when the tumor cells are reduced, the drug dosages are decreased.
Fig. 4, shows the estimated parameters. This figure shows that the
estimated parameters converge to their actual values and the system is
robust against the assumed uncertainty. The actual values of para-
meters are described in Table 1.

Case 3: System with an extended Kalman filter observer
In this case, the controller with an extended Kalman filter is

implemented. Immune cells are estimated, and the estimated values
are used in the control process. The initial parameters of an observer in
Eqs. (26) and (27) are assumed to be: P I= 100 3, Q I= 0.001 3, R I= 2 .

The initial values of the estimated parameters are assumed to be (δ ,
b = 11 , c = 0.82 , c = 2.53 , and a = 0.152 ). The initial values of states are
assumed to be (I(0) = 0.15, T (0) = 0.7, and N(0) = 1) and the desired
values are (I = 1.7d , T = 0d , and N = 1d ). The estimated values of
immune cells are shown in Fig. 6.

The time response of the system states is shown in Figs. 7.

Fig. 1. Response of the system without controller with the initial values of (I(0) = 0.15,
T (0) = 0.7, N(0) = 1). Fig. 2. The system response in presence of the robust adaptive controller. Desired values

are (I = 1.7d , T = 0d , and N = 1d ) and the state initial values are (I(0) = 0.15, T (0) = 0.7,
and N(0) = 1). Using the controller, the states are tracking their desired values.

Fig. 3. The interaction between immune, tumor and normal cells, in the three
dimensional graph, in presence of the robust adaptive controller. Desired values are
(I = 1.7d , T = 0d , and N = 1d ) and the state initial values are (I(0) = 0.15, T (0) = 0.7, and
N(0) = 1).

Fig. 4. Estimated and real values of the parameters of tumor dynamics in the presence of
the controller.
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According to Fig. 6, the estimated values of immune cells are converged
to their real values. Real values of immune cells are generated by the
differential equations of cancer chemotherapy model that are described
in Eqs. (1), (2) and (3). The parameter values of these equations are
described in Table 1. As one can observe from Fig. 7, when these
estimated values are used in the controller, the states track their
desired values. This shows that the system is stable in the presence of
the designed observer.

6. Comparison to the prior work

In this section, we will discuss a comparison between our work and
similar prior work. The optimal control has been widely used in many
papers, such as [31], and is the most popular method to control the
tumor growth. This method provides the tracking performance of
biological cells (tumor, immune and normal cells) to their desired
values. Moreover, in this approach the amount of calculated drug
dosage is within an acceptable range and does not have a damaging
effect on normal cells. But this approach assumes the model para-
meters are known, and as a result is not robust against parameters
uncertainty. Adaptive and robust control are two important ap-
proaches, that solve this problem. The robust control approach, (see
e.g., [24]), is robust control based on μ-synthesis, which assumes an
appropriate cost function, that minimizes the amount of drug dosages
while the tumor growth is reduced. This method is robust against
models uncertainty. However, the model parameters are not estimated
in the control loop. Adaptive robust controller is another approach that
is robust against parameters uncertainty, and also estimates the model
parameters in the control loop which is the most similar work to ours
[26]. In this paper, the adaptive robust control have been used, but the
first order nonlinear model that only uses tumor cells, is considered. In
this paper three nonlinear models, including log-kill hypothesis,
Norton-Simon hypothesis and Emax hypothesis are considered. The
log kill hypothesis model that is used in this paper is expressed as:

x rxln x δxu t˙ = − ( ) − ( ), (28)

where r is the tumor growth rate and δ is the constant coefficient. The
values of these parameters are listed in Table 2.

The control signal that is obtained in this paper is,

u Yθ= . (29)

where Y is the regressor vector that is defined as following;

⎡
⎣⎢

⎤
⎦⎥Y lnx= − − ,ϕ

x (30)

and ϕ is expressed as:

ϕ x α x x= ˙ − ( − ).d d (31)

In Eq. (29), θ is the estimation parameters vector and is obtained
by,

θ xxΓY δ˙ = sign( ).∼ T (32)

The initial value of tumor cell is assumed to be x = 0.90 , and the
desired values of tumor cell is x = 0d . The initial values of parameters
which are estimated by Eq. (32) are assumed to be δ r( = 0.55, = 0.12).

According to the computational results in this paper, tumor cells popula-
tions are controlled, but the normal and immune cells are not considered in
the model, so they are not controlled by the adaptive robust controller. If high

Fig. 5. The chemotherapy drug dosages u1, u2 and u3 that make the immune, tumor and

normal cells converge to their desired values. The dosage of u2 is greater than the dosages

of u1 and u3.

Fig. 6. Estimated values of immune cells using extended Kalman filter. The initial values
of the observer are P I( = 100 3, Q I= 0.001 3, R I= )2 , and the initial value of the states are

(I(0) = 0.15, T (0) = 0.7, and N(0) = 1).

Fig. 7. Response of the system with robust adaptive control and extended Kalman filter.
Desired values are (I = 1.7d , T = 0d , and N = 1d ) and the initial values are (I(0) = 0.15,
T (0) = 0.7, and N(0) = 1), using the controller, the states track their desired values.

Table 2
Nominal parameters of the model.

Parameter Value

r 0.1
δ 0.45
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drug dosage is injected to the system,more toxicity is generated and as a result
more normal cells are killed. In our work a third order nonlinear model is
considered and we control the immune, normal and tumor cells, simulta-
neously, and the problem of killing the normal cells is solved.

7. Conclusion

In this paper, an adaptive robust control strategy with an extended
Kalman filter observer is developed. This controller adjusts the drug
dosages and controls the tumor, immune and normal cells in che-
motherapy. In this approach, the Lyapunov stability theorem is used to
prove the stability and convergence of process. The parameters of
model are estimated in the control loop, and the controller is robust
against parameters uncertainty. Since, measuring the immune cell is
difficult in practice, a nonlinear extended Kalman filter observer is used
to estimate this value.

Computational results show the efficiency of adaptive control in the
presence of extended Kalman filter. According to the computational
results, after implementation of the controller, the tumor, normal and
immune cells are tracking their desired values. This approach guaran-
tees the estimation of model parameters within an acceptable error
bound and the observer estimates the immune cells well. The estima-
tion error of immune cells converges to zero. Moreover, our approach
achieves the same performance as optimal control, with the advantage
that the optimal control is not robust against parameters uncertainty.
Thus, the adaptive robust control is more efficient than the optimal
control approach in this problem.
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